
Theoretical Analysis of Dynamic Response of a Vaporizing
Droplet to Acoustic Oscillations

Roger Prud’homme∗

Pierre et Marie Curie University/Centre National de la Recherche Scientifique,

75252 Paris, France

and
Mohammed Habiballah,† Lionel Matuszewski,‡ Yves Mauriot,§ and Aurélie Nicole¶

Office National d’Etudes et de Recherches Aérospatiale, 92322 Châtillon, France

DOI: 10.2514/1.39379

This paper deals with the analysis of an unsteady evaporating droplet in connection with combustion instabilities

in rocket engines. We first present a bibliographic survey. We then obtain an analytical solution in the frequency

domain using the Heidmann analogy of a spherical droplet of constant volume, which represents amean droplet at a

fixed place in a chamber, in the steady regime. For the case of a moderate characteristic time of liquid thermal

conduction compared with the droplet lifetime, we show that for small perturbations, the knowledge of the response

factor makes it possible to determine exactly the amplification zone in the frequency domain. We first consider the

simplification of Heidmann and Wieber, for which the droplet has a uniform temperature. We then present a new

analysis, in which the finite thermal diffusivity of the liquid is taken into account. We find strong differences

compared with the results of the precedingmodel. For the purpose of implementation in a numerical code, we derive

a thermal transfer model with n discrete layers. For the case n� 2 we verify that this model can be optimized by

adjusting the volumetric ratios between layers. Finally, the quasisteady equations of the gas phase are presented in

the appendix.

Nomenclature

A = droplet constituent
A, B = coefficients in the transfer function�
�a; b;
�b; c; �c

= coefficients defined in Appendix

BT , BM
= Spalding coefficients for heat and mass transfer

c = chamber (conditions at infinity)
cp, cL = heat capacity of the gas at constant pressure, heat

capacity of the liquid
D = mass diffusion coefficient
f = arbitrary quantity
h = height
i = time index during navigation
j = index of chemical species
k = heat conductivity
l = latent heat per unit mass
L = liquid phase
M = mass of a droplet
_M = vaporization rate of an evaporating droplet
N = response factor
p = pressure

Q = heat flux
r = radius
T = temperature in K
t = time
u = reduced frequency ! ��v
Y = mass fraction
Z = transfer function�
�; �;
’; �

= coefficients defined in Appendix

�
= heat exchange coefficient

" = volume ratio in the two-layer model
� = time ratio ��v= ~�T
� = heat diffusivity
� = density
��v = average residence time of a Heidmann droplet
��T , ~�T = heat transfer characteristic times
	 = phase difference
! = pulsation of a wave

I. Introduction

T HE thermal exchanges inside propellant droplets have an
important effect on their transient evaporation behavior and

eventually on engine stability. In rocket engines, they occur in
particular in the following cases:

1) After injection, fuel or oxidizer liquid droplets are not
stabilized. Liquid droplets are generally injected into a gaseous
environment having a different temperature, pressure, and velocity.
A relaxation time is then necessary for a droplet to reach a stabilized
situation. At the end of this relaxation period, the velocities of gas
and liquid are equal, and the droplets reach a uniform temperature
equal to the temperature of saturated vapor at the liquid surface.
Sometimes, the droplet lifetime is too short to reach these stabilized
conditions. It is thus possible for them to remain in a transient
situation for temperature or/and for velocity.

2) Even for stabilized droplets, acoustic waves generated by the
enginemay cause departure from the stabilized state. The subsequent
vaporization and combustion dynamics can contribute to a high-
frequency instability of the whole chamber. Indeed, high-frequency
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combustion instability in liquid propellant rocket engines results
from a coupling between the combustion processes and the chamber
acoustics. It has been shown in previous studies [1,2] that in liquid
rocket engines, the acoustic periods of the chamber modes (about
10�4 to 10�3 s) may be of the same order of magnitude as the
characteristic times of vaporization and combustion, whereas the
primary and secondary atomization phenomena intervene at smaller
time scales. Many papers about this subject have been published (see
Bhatia and Sirignano [3], Delplanque and Sirignano [4,5], DiCicco
and Buckmaster [6], Dubois et al. [7], Duvur et al. [8]; Fachini [9];
Heidmann & Wieber [10], Heidmann [11], Laroche et al. [12],
Sirignano et al. [1]; Tong and Sirignano [13], Wieber and Mickelsen
[14], and Williams [15]).

We consider the case of a velocity-stabilized and uniform
temperature spherical droplet in an infinite atmosphere. The effect
of a nonuniform internal temperature has only a minor influence on
droplet dynamics (we haveverified this fact by an investigation that is
not presented in this paper).

Following the well-known Rayleigh criterion [16], unsteady
droplet evaporation and burning could be one possible driving
mechanism of instability [17,18]. To investigate this possibility,
we will look for the response factor, defined as the ratio of evapo-
rating mass flow rate perturbation to the pressure or velocity
perturbation.

Of course, the complete prediction of the effect of an acoustic
excitation on a burning spray of propellant droplets will need to
model properly combustion dynamics. In this study, we will be
concerned only with vaporization dynamics. The influence of
combustion will be limited to imposing a stationary composition
and temperature at infinity. The combined effects of vaporization
dynamics and combustion kinetics and their eventual retroaction on
ambient pressure will not be analyzed here.

We will consider an evaporating droplet submitted to an acoustic
field with two main objectives: 1) to build a reference analytical
linear model for small perturbations (which we will call the
continuous model), and 2) to build discrete models aimed at treating
linear or nonlinear situations in codes for computational fluid
dynamics and turbulent combustion.

We will assume that the gas phase is in the quasisteady regime, as
was done inmany previous investigations of the transient behavior of
spherical droplets (see for example Crespo and Liñan [19], Lefebvre
[20], and Strahle [21]). This supposes that the gas phase has a very
short response time, whereas for the liquid phase, unsteady
evolutions must be considered.

II. Hypotheses of Heidmann and Wieber

A. Droplet Continuously Fed by a Steady Flow

In a liquid propellant rocket combustion chamber, the fuel and the
oxidizer are usually injected in the form of droplets with a convenient
mass flow rate. These droplets then vaporize and the gaseous fuel
burns in contact with the gaseous oxidizer. The study of the evolution
of moving droplets submitted to an acoustic field during their
residence time in the chamber is a complex problem. We therefore
adopt a simplified approach to establish an analytical model in the
frequency domain for an isolated droplet. This simplified model can
help the comprehension of physical phenomena, and will also be the
basis for validating discrete computational fluid dynamics (CFD)
models. Following Heidmann and Wieber [10] and Heidmann [11],
we adopt the analogy of a constant volume evaporating droplet (at
rest with respect to the mean flow, in a first approach), continuously
fed by a steady flow. This droplet represents a mean droplet at a
specified location in the combustion chamber. In the steady chamber
regime, there is a continuous flow of fuel droplets through the
combustion chamber. At a given location the mean droplet diameter
can be considered as being independent of time, because the droplets
are continuously replaced.

The considered evaporating droplet has a constant average radius

�rs, and is continuously supplied by a stationary mass flow rate �_M
(Fig. 1). The droplet can be fed at different places by fuel at the

average temperature �TS, with the averagemass flow rate �_M. The total
mass balance of the droplet is

dM=dt� �_M � _M (1)

In steady state, one has _M � �_M, dM=dt� 0,M � �M. If the thermal
conductivity of the droplet is infinite, the droplet has a uniform
temperature equal to its surface temperature TS, independent of the
manner in which the droplet is fed.

For case of a finite conductivity the situation is different. In this
case two characteristic times intervene: a residence time in the

droplet ��v � �M= �_M (which replaces the notion of droplet lifetime in
the present situation of constant diameter) and a transfer time for
thermal diffusion ��T � �r2S=�L, where the thermal diffusivity of the
liquid is �L � kL=�LcL. One can estimate that the conduction mode
will dominate if ��T � ��v. The case of infinite thermal conductivity of
the drop is the limiting case for this configuration, and leads to
Tl � TS. On the contrary, for ��T � ��v the convection of fuel will be
dominant. The two modes will coexist for ��T � ��v. We will define
the timescale ratio �� 9��v= ��T (the coefficient 9 permits to obtain
later a simple expression of the transfer function).

B. Response Factor

Heidmann and Wieber [10] considered a droplet submitted to a
pressure perturbation. The response is then the resulting heat or mass
perturbation. The reduced pressure perturbation is defined as
p0 � �p � �p�= �p, and the resulting reduced heat or mass perturbation
is q0 � �q � �q�= �q.

The response factor N is defined as

N �
ZZ
V;t

q0�V; t�p0�V; t� dt dV
�ZZ

V;t

	p0�V; t�
2 dt dV (2)

For sinusoidal oscillationsN � �jq̂j=jp̂j� cos	, where jq̂j, jp̂j are the
moduli and 	 is the phase difference between q0 and p0. An example
of a droplet submitted to periodic oscillations is the following: the
droplet is located at a velocity node and pressure and temperature
antinode of a standing wave in a closed cavity. In this case there is no

Fig. 1 a) Boundary conditions of a vaporizing droplet. The subscriptC
designates the conditions at infinity (i.e., the combustion chamber.)
b) Droplet of radius r, continuously supplied by amass flow rate of liquid

fuel
�_M.
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external flow near the droplet. However, the case of a velocity
antinode corresponds to a possible situation and may also be
considered.

C. Droplet with Uniform Temperature

The most extreme simplification consists in assuming an infinite
thermal conductivity (i.e., ��T � 0), which leads to a droplet
temperature that is uniform but variable in time. We then have (cf.,
Heidmann and Wieber [10], Chin and Lefebvre [22])

McL
dTS
dt
�QL (3)

where cL is the specific heat of the liquid.
Consider now small acoustic perturbations, writing f� �f��f

where f is a flow parameter, �f is the absolute perturbation, and
f0 ��f=f is the corresponding relative perturbation.

We suppose that the evaporation at the surface is always at
equilibrium. However, because the temperature is variable, the
partial pressure of species F varies with time, and thus the con-
centration YFS adapts itself to the temperature variations. The
linearized equation for the heat absorbed by the liquid is simply

�McL �TS dT
0
S=dt��QL (4)

For harmonic perturbations of the form f 0 � f̂�r�ei!t, the last
equation becomes

�Q̂L � �McL �TSi!T̂S (5)

Eliminating�Q̂L and T̂S between the last equation and the equations
for the gas [Eqs. (A7) and (A8)] given in the Appendix, one obtains
the following transfer function:

Z1 �
1

�

_̂M

p̂C
� iu

1� iu
A � iu
B� iu (6)

with u� 3! ��v, A� 3� �a �b���=�, B� 3�=�, �� cL �TS= �‘ (the
parameters �a, �b,� and � are defined in the Appendix). The real part
of Z1 and its phase 	1 may be written in an explicit form
N1=�� u2�AB� A� B� u2�=�1� u2��B2 � u2�,
	1 � 
=2� arctan��u=A� � arctan�u� � arctan�u=B�. Figure 2
shows the transfer function given by Eq. (6). The cut-off frequency
(corresponding to N1 � 0) is given by u2c1 � AB� A� B.

Remark 1: If A > 0 and B > 0, which is true for all practical cases
we have encountered until now, we can deduce the following:

1) For the case �� cL �TS
�‘
� 1, corresponding to a large value of the

liquid heat capacity compared with the latent heat, u2c1 � A� B�
3 �a �b
�

will have a small positive value; thus, usual frequencies will
have the same effect as very high frequencies, and so we will have
Z1 � �1, meaning that evaporation has a damping effect;

2) In the opposite case �� 1, u2c1 � AB will be proportional to
��2, and thus have a large positive value; as a consequence for usual
frequencies, we will have Re�Z1�> 0, meaning that the evaporation
mechanism will have an amplifying effect.

As a synthesis, we remark that in the case of an infinite internal
conductivity, the only coupling mechanism related to the droplet
heating is controlled by the ratio �� cL �TS

�‘
of the heat capacity to the

latent heat. For example, a small value of the heat capacity in
comparison to the latent heat will tend to enlarge the amplification
range in the frequency domain.

Remark 2: In their analysis, Heidmann and Wieber [10] suppose
that the variations of the latent heat of evaporation ‘ with
perturbations to the drop temperature are negligible (corresponding
to the equation l0 � � 2c

�TS�c
T 0S given in the Appendix, with c� 0).

They adopt a Sherwood number Sh proportional to �rspC�1=2,
because they consider the presence of an external flow (in the present
case we have Sh� 2). Their expression for the mass flow rate is
obtained for equal molar masses MA �MF and for a zero

concentration of fuel at infinity, YFC � XFC � 0. The Lewis number
is taken equal to unity. With these hypotheses, if we substitute the
following relations into our equations presented previously and
in the Appendix, 1� BM � pL=�pC � pL�, �� 	pL=�pC � pL�
=
ln 	pC=�pC � pL�
, and ’� 1� �BM � �pL=� �pC � �pL� (cf., the
Appendix for the definitions of BM, �, and ’), we recover the
results of Heidmann and Wieber [10].

III. Continuous Model with a Finite
Thermal Diffusivity

Let us recall that our first objective is to build an analytical linear
reference model for small perturbations. To assess the influence of
the thermal wave inside the droplet on the unsteady evaporation
mechanism, we abandon the Heidmann and Wieber [10] hypothesis
of infinite liquid conductivity. Studying the thermal exchanges inside
the droplet and considering a feeding at the center of the droplet, in
the general case the effect of internal convection should be taken
into account. However, to establish an analytical solution in the fre-
quency domain, we will suppose that the thermal diffusion time is
sufficiently small compared with the residence time (or equivalently
that the parameter � defined in II.Amust be sufficiently high), so that
we can neglect the convective term in the energy equation of the
droplet.

A. Energy Conservation Equation

The temperature of the liquid is a function of space and time and
verifies the equations

�LcL
@Tl
@t
� �LcLvr

@Tl
@r
� kL
r

@2�rTl�
@r2

� 0

4�r2SkL
@Tl
@r

����
rS

�QL; Tl�rS; t� � TS;
@Tl
@r

����
r�0
�0

The central injection velocity is vr � �LcL
�_M

4��Lr
2, which leads to

@�rTl�
@t
� kL

�
3

�

�rs
r

@Tl
@r
� @

2�rTl�
@r2

�
� 0

wherewewill neglect the convective term, becausewe have assumed
that �� 9�L ��v= �r

2
S � 9 ��v= ��T � 1.

We thus have

�LcL
@Tl
@t
� kL
r

@2�rTl�
@r2

� 0

4
r2SkL
@Tl
@r

����
rS

�QL

Tl�rS; t� � TS;
@Tl
@r

����
r�0
�0 (7)

The temperature profiles in a spherical dropwere previously obtained
numerically or by series expansion (see Law and Sirignano [23].
Here we need a simple analytical model, and we will use the
linearized continuity equations for small perturbations.

B. Linearized Equations of the Continuous Model

For small perturbations, the equations of energy conservation can
be written

�LcL
@T 0l
@t
� kL
r

@2�rT 0l�
@r2

� 0; 4
r2SkL �TS
@T 0l
@r

����
rS

��QL

T 0l�rS; t� � T 0S;
@T 0l
@r

����
r�0
�0

(8)

Introducing f 0 � f̂�r�ei!t, we find a solution of the form rT̂l�
C�es0r � e�s0r�, with s0 � �1� i�

��������������
!=2�L

p
and C� rST̂S=

�es0rS � e�s0rS �. Thus, we have
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�Q̂L ��4
 �rSkL �TSET̂S (9)

where E� 1 � s0rS coth�s0rS�, with s0rS � �1� i�
�������������
3u=2�

p
,

�� 9�L ��v= �r
2
S � 9��v= ��T .

C. Transfer Function of the Continuous Model

Eliminating T̂S between Eqs. (9), (A7), and (A8), we obtain an

expression for the complex transfer function [24]: Z� _̂M=�p̂C

Z��; u� � iu

1� iu
A� �E�u�
B � �E�u� (10)

where u,A andB have the same definition as in Eq. (6). In the limit of
infinitely high values of �, one has E � ��s0rS�2=3��iu=� and
so Z � iu�A � iu�=�1� iu��B� iu� � Z1, the transfer function
already found in Sec. II.C for the case of a liquidwith infinite thermal
conductivity.

In the low frequency limit u! 0,Z! 0, andN=��<�Z� ! 0,
and in the high-frequency limit u!1, Z! ��1�, and
N=�� Re�Z� ! ��1�.

The effect of arbitrarily changing the reduced exchange coefficient
� is shown in Fig. 3.

The curves of Fig. 3 show that for each value of the thermal
exchange coefficient, the response factor starts from zero at zero
frequency, presents a maximum and goes through zero at a cut-off
frequency uc. Between u� 0 and u� uc, the response factor is
positive and the evaporation mechanism has a destabilizing in-
fluence. For u > uc the response factor is negative and evaporation
has a stabilizing influence. The cut-off frequencyuc is a function of �.
The value of � has a significant influence on the extension of the
amplification domain. In the case of a liquid oxygen (LOX) droplet in
a mixture of gaseous oxygen and water vapor at TC � 550 K,
pC � 10 b, YAC � 0:9 (cf., Fig. 3), an increase of � (proportional to
the thermal conductivity of the liquid) tends to increase uc.

Remark 1: for �!1 one finds again for uc the result obtained in
Sec. II.C for a droplet with uniform temperature (Fig. 2b).

Remark 2: the conditions of Fig. 3 have been chosen differently
from the conditions of Fig. 2, and thus the values of the cut-off
frequency can not be compared. The reason of this choice was the
need to make the reduced exchange coefficient � sufficiently high, so
as to ensure that the hypotheses of the continuous linearized model
are valid.

Remark 3: whereas in the case of infinite conductivity the
extension of the amplification range is mainly determined by the
parameter �, in the general case � intervenes as a complementary
parameter.

Remark 4: the previouslymentioned results are in accordancewith
the feeling that increasing the dissipative phenomena inside the
droplet will have a stabilizing effect in comparison to the
nondissipative case (�!1). Moreover, they confirm the need to
model adequately the nonstationary heat transfer inside the droplet.

IV. Multilayer Model

Our second objective is to build a discretemultilayermodel (called
n-layer model) that can be implemented in a CFD code. Indeed, the
previously presented continuous analyticalmodel can only be used in
the limit of small perturbations, for �� 1, and in the framework of
frequency domain calculations. We will now look for a linearized
form of the n-layer model to validate it by comparison with the
continuous model. However, we intend to use it finally in a non-
linearized form in a CFD code to be able to treat strong perturbations
leading to nonlinear responses. Moreover, let us clarify that we
intend to implement the n-layer model into a CFD code without the
hypothesis of constant diameter.

A. n-Layer Model

The assumptions of the n-layer model are the following: 1) n
layers of homogeneous temperature, and 2) uniform internal
conductivity inside the droplet.

1. Balance Equations

The equations of the model are (Fig. 4)

M0cL
dT0
dt
�Q1;0; M1cL

dT1
dt
�Q2;1 �Q1;0; 
 
 


Mn�2cL
dTn�2
dt
�Qn�1;n�2 � Qn�2;n�3

MScL
dTS
dt
��Qn�1;n�2 �QL; MS �Mn�1; TS � Tn�1

(11)

The fluxes Qj;j�1 can be written

Fig. 2 Oxygen in water vapor at 10 bar and 3200 K, YAC � 0:9,
A� 6:786, B� 319:81, �� 4:5067: a) Z1 function [Eq. (6)], b) real part
of Z1 as a function of reduced frequency u.
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Fig. 3 Influence of the reduced exchange coefficient � on the reduced

response factor N=�� Re�Z� of the continuous model in the case of a

LOX droplet in a O2=H2Omixture, TC � 550 K, pC � 10 b, YAC � 0:9,
A� 10:80, B� 96:09, �0 � 10:23, �� 1:790.
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Q1;0 � �0M0cL�T1 � T0�; Q2;0 � �1M1cL�T2 � T1�; 
 
 

Qj;j�1 � �j�1Mj�1cL�Tj � Tj�1�
Qj�1;j � �jMjcL�Tj�1 � Tj�; 
 
 

Qn�1;n�2 � �n�2Mn�2cL�Tn�1 � Tn�2�

QL � _Ml

�
cp�TC � TS�

BTl
� 1

�
(12)

The exchange coefficient �j can be evaluated. The concept of
exchange coefficient consists in simplifying the definition of the
heat flux through the surface by writing that it is proportional to the
difference in temperature between the considered surface and
another more or less distant surface. It is possible to evaluate the heat
exchange coefficient by means of some assumptions. For the
exchange between the kernel at T0 and the first layer at T1, we easily
obtain �0 � �L3r1=r20�r1 � r0�. For the other coefficients, it is
possible to compare the approximation of an exchange coefficient
with the continuous purely conductive profile in the layer between
rj and rj�1. The thermal profiles are, for rj < r < rj�1

T � bTj�1rj�1 � Tjrj � rj�1rj�Tj�1 � Tj�=rc=�rj�1 � rj�
! � dT= dr�j�r�rj � rj�1�Tj�1 � Tj�=rj�rj�1 � rj�:

Thus Qj�1;j � 4
kLrj�1rj�Tj�1 � Tj�=�rj�1 � rj�. Let us cal-
culate �j. We have Qj�1;j � �jMjcL�Tj�1 � Tj��
�4=3�
�r3j � r3j�1��LcL�j�Tj�1 � Tj�. By comparison between
these two expressions, one deduces �j � �L3rj�1rj=
�r3j � r3j�1��rj�1 � rj�. Setting j� 0, rj�1 � 0, one finds again the
expression for �0.

2. Case of Layers of Equal Volumes

For the case in which the n layers have the same volume, one can
write

dT0
dt
� nQ1;0

McL
;

dT1
dt
� n

McL
�Q2;1 �Q1;0�; . . .

dTn�2
dt
� n

McL
�Qn�1;n�2 �Qn�2;n�3�;

dTS
dt
� n

McL
�QL �Qn�1;n�2�

(13)

with

rj;n �
�
j� 1

n

�1
3

rs for 0 � j � n � 1

We model the interface fluxes in this way:

Qj�1;j � �j;n
M

n
cL�Tj�1 � Tj� (14)

and then sum up these fluxes, which leads to

dT0=dt� �0;n�T1 � T0�;
dT1=dt� �1;n�T2 � T1� � �0;n�T1 � T0� . . .

and

dTn�2=dt� �n�2;n�Tn�1 � Tn�2� � �n�3;n�Tn�2 � Tn�3�

with Tn�1 � TS;
Xn�1
j�o

dTj=dt� nQL=McL

The previously defined heat exchange coefficients lead to the
dimensionless relation �j;n � �n2=3=	�j� 1��1=3 � �j� 2��1=3
,
�j;n � 3�j;n ��v, with �� 9�L ��v= �r

2
S � ��v= ~�T as defined in Eq. (9).

3. Linearized Equations of the n-Layer Model

For small perturbations we can write

dT 00=dt� �0;n�T 01 � T 00�;
dT 01=dt� �1;n�T 02 � T 01� � �0;n�T 01 � T 00�; . . . dT 0n�2=dt
� �n�2;n�T 0n�1 � T 0n�2� � �n�3;n�T 0n�2 � T 0n�3�
with T 0n�1 � T 0S;

�QL � �McL=n� �TS
Xn�1
j�o

dT 0j=dt

(15)

The linear character of the equations induces the following form:

Xn�1
j�0

T 0j � �n��0;n; . . . ;�n�2;n; u�T 0S

.
We calculate �n � 1�

P
T
n�1Xn�1 � 1�

P
T
n�1M

�1
n�1en�1 using

the matrix

M n�1

� 1

�n�1;n

�iu��0;n� ��0;n 0 . . . 0 0

��0;n �iu��0;n��1;n� ��1;n 0 0

0 ��1;n �iu��1;n��2;n� ��2;n 0

. . . . . . . . . . . . . . . . . . . . .

0 ��n�4;n �iu��n�4;n��n�3;n� ��n�3;n
0 0 ��n�3;n �iu��n�3;n��n�2;n�

2
666666664
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777777775
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Fig. 4 Heat exchanges in the n-layer model.
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where XTn�1 � 	T 00=T0ST 01=T0S . . .T 0n�2=T0S
,
P

T
n�1 � 	 1 1 . . . 1 
,

eTn�1 � 	 0 0 . . . 1 
.
Setting f0 � f̂�r�ei!t we find

i!T̂0 � �0;n�T̂1 � T̂0�; i!T̂1

� �1;n�T̂2 � T̂1� � �0;n�T̂1 � T̂0�; 
 
 
 i!T̂j
� �j;n�T̂j�1 � T̂j� � �j�1;n�T̂j � T̂j�1�; 
 
 
 ;�Q̂L

�McL
n

�TSi!
Xn�1
j�0

T̂j (16)

4. Transfer Function of the Linearized n-Layer Model

The transfer functionZn has been obtained in the general case [25]
and calculated up to n� 30. From Appendix A.II (Eqs. (A7) and
(A8)) and from Eq. (13) one deduces

Zn �
1

�

_̂M

p̂C
� iu

1� iu
A � iu �n

n

B� iu �n
n

(17)

where � is given by Eq. (A5).
We verify that the cut-off frequency of the n-layer model with

equal volumes converges toward that of the continuous model when
the number of layers increases, as shown in Fig. 5.

It can be seen that satisfactory results are obtained only with a
relatively high number of layers (about 10), and that the convergence
rate slows down with increasing n. Nevertheless, it is possible to
improve convergence by considering layers of different volumes and
optimizing the relative volumes. Note that the conditions of this
convergence test have been chosen so as to make the reduced
exchange coefficient � sufficiently high, which guarantees that the
linearized continuous model can be used as a reference model.

B. Two-Layer Model

The two-layer model is a particular case of the n-layer model with
nonequal volumes. We envisage this very simplified model for the
purpose of low-cost calculations. The geometry of the two-layer
model consists of two concentric spheres (Fig. 6). In the first one, of
radius r0, the temperature is supposed to be uniform and equal to T0.
Between the spheres of radii r0 and r1 � rS the temperature is also
uniform and equal to TS. Temperatures T0 and TS depend on time.
Figure 6 highlights the various heat exchanges. The equations of the
problem are

M0cL
dT0
dt
�QS0; MScL

dTS
dt
��QS0 �QL (18)

with

(
QS0 � �0M0cL�TS � T0�; QL � _M‘�Cp�TC�TS�

lBT
� 1�;M � 4

3

r3S�L;

M0 � 4
3

r30�L;M1 �MS � 4

3

�r3S � r30��L; _M� 2
 k

cp
rSNu

� ln �1� BT�
(19)

where �L is the liquid density. The heat exchange coefficient is

�0 �
3�LrS

r20�rS � r0�
� 3�L
r2S"

2=3�1 � "1=3�
; "�

�
r0
rS

�
3

(20)

We thus obtain

dT0
dt
� �0�TS � T0�;

dTS
dt
�� "

1 � " �0�TS � T0� �
_M‘

MScL

�
ln �1� BT�

BT‘
� 1

�
�TC � TS�

(21)

We evaluate the exchange coefficient �0, as done previously. Using
Eq. (20) we can then obtain a relation between the approximate
dimensionless exchange coefficient�� 3�0 ��v and the volume ratio

�"2=3�1 � "1=3� � � (22)

used in the linearized theory in the next section.
In steady mode of pure conduction and for constant radii r0

and rS, the temperature can be written T � 	TSrS � T0r0�
�T0 � TS�rSr0=r
=�rS � r0� ! �dT=dr�jr�rS � rS�TS � T0�=
r0�rS � r0�.

WithQ10 � 4
hr20�TS � T0�, one deduces h� rSkL=r0�rS � r0�,
Q10 � 4
kL�TS � T0�rSr0=�rS � r0�.

With Q10 � �0M0cL�TS � T0� � �4=3�
r30�LcL�0�TS � T0�,
one deduces �0 � �L3�rS= �r20�rS � r0�. Because in addition, ��
9�L ��v= �r

2
S � ��v= ~�T and �� 3�0 ��v � � �r3S= �r20� �rS � �r0�, with "�

� �r0= �rS�3, we finally obtain Eq. (22).

1. Linearized Equations of the Two-Layer Model

For small temperature perturbations the previous equations can be
linearized and lead to

dT 00
dt
� �0�T 0S � T 00�; �McL �TS

�
"
dT 00
dt
� �1 � "� dT

0
S

dt

�
��QL

(23)

Fig. 5 Convergence of the n-layer model toward the continuous model

for an increasing number of layers (LOX droplet in aO2=H2Omixture,

TC � 550 K, pC � 10 b, YAC � 0:9).
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Fig. 6 Heat exchanges in the two-layer model.
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where �0 can be expressed as a function of " and �. Setting
f 0 � f̂�r�ei!t, we find

i! T̂0 � �0�T̂S � T̂0�;

�Q̂L � �McL �TSi!�"T̂0 � �1 � "�T̂S�

2. Transfer Function of the Two-Layer Model

The transfer function for the two-layer model is given by

Z2 �
1

�

_̂M

p̂C
� iu

1� iu
��� iu��A � iu� � "u2
��� iu��B� iu� � "u2 (24)

whereA,B, ",� are the constant coefficients defined previously. The
index of Z indicates the number of layers in the discrete model for
thermal exchanges inside the liquid droplet.

As a first step we will consider A, B, ", � as independent
parameters [i.e., without Eq. (22)] for the case of a liquid Nusselt
number equal to two. The liquid Nusselt number Nu characterizes
the degree of agitation inside the liquid droplet, which may be
induced by a small velocity difference between droplet and gas, or
by a nonhomogeneous temperature at the droplet surface, which can
generate aMarangoni effect. For "� 0 (one layer, r0 � 0), we obtain
again Z2 � Z0. The cut-off frequency is thus uc0. For " ≠ 0 and
" ≠ 1, �� 0, in this case there are two layers without any heat
exchange. Therefore

Z2 �
iu

1� iu
A � iu�1 � "�
B� iu�1 � "� ≠ Z1

N2

�
� u

2	AB� A� B� "�A� B� � u2�1 � "�2

�1� u2�	B2 � u2�1 � "�2


and the reduced cut-off frequency becomes: u2c2 � 	AB� A� B�
"�A� B�
=�1 � "�2 � u2c1.

Thus, for a given droplet radius, the absence of heat exchange
between the two layers leads to an extension of the amplification
domain. The limiting case "� 1 corresponds to one layer without
heat exchange. In this case, there is no cut-off frequency. In the
general case of the two-layer model, we have 0h"h1.

Taking now into account the relation (22) between � and ", we
obtain the results given in Fig. 7 for several values of �. From a
qualitative point of view the results are similar to those of Fig. 3
obtained with the continuous model. However, the stabilizing effect
of thermal dissipation inside the droplet is underestimated in
comparison to the continuous model.

To obtain results in good agreement with those of the continuous
model, we have performed an optimization of the parameter ". We
can notice that we are in the same mathematical situation as the n-
layer model with layers of different volumes.

3. Optimization of the Volume Ratio in the Two-Layer Model

Thegoal of the optimization of the two-layermodel is to obtain, for
any set of conditions, a behavior comparable to the one of the
continuous model by choosing the size of the accumulation nucleus.
The optimization parameter is the volume ratio.

We need to define a criterion to identify the best agreement with
the continuous model. As a first criterion, it is important to find the
best approximation for the cut-off frequency of the real part of the
transfer function so as to correctly predict the frequency range of
amplifying or damping effect of unsteady vaporization. A second
criterion is the response in the complex plane, including both
amplitude and phase response. A comparison of the responses is
presented in Fig. 8, which shows that in our validation case evaluated
for a LOX droplet, the best approximation with the two-layer model
is obtained for a volume ratio between 0.5 and 0.7, whereas a model
with 15 layers leads to a response much closer to the continuous
model. We estimate the distance in the complex plane between the
response of the two-layer model and of the continuous model in the
range of interest 	0;usup
, by a normalized mean quadratic error

Err =Rmax �
1

Rmax

�������������������������������������������������������������������������������������������Pj�99
j�0 fZ2	usup=�j� 1�
 � Z	usup=�j� 1�
g2

100

s

where Rmax is the maximum value of the real part of the transfer
function of the continuous model. By means of this distance, we can
check if the discrete model properly restitutes the global effect in this
frequency range.We used a hybrid algorithm combining both criteria
to manage eventual multiple solutions by the first criterion. Figure 9
shows an example of results (optimized volume ratio and precision)
obtained by the optimized two-layer model, respectively, with the
distance criterion and the hybrid algorithm, in comparison to the
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Fig. 7 Influence of the reduced exchange coefficient � on the response
factor of the two-layer model ("� 0:6) for the same system as Fig. 3

(LOX droplet in a O2=H2O mixture, TC � 550 K, pC � 10 bar,
YAC � 0:9, �0 � 10:23).

Fig. 8 Comparison in the complex plane of the responses of the

different models (LOX droplet in a O2=H2O quiescent atmosphere,

TC � 550 K, pC � 10 bar, YAC � 0:9, reduced frequency range �0; 2uc�).

Fig. 9 Comparison of the precision of the optimized two-layer model
and the n-layer model: influence of the internal conductivity (note

k� k0: LOX droplet in a O2=H2O mixture, TC � 550 K, pC � 10 b,
YAC � 0:9).
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n-layer model. This comparison is done by observing the sensitivity
to the internal conductivity. The reference case for this sensitivity
analysis is the one of a LOX droplet in an atmosphere at 10 bar and
550 K. It can be seen that, in this case, the distance criterion and the
hybrid criterion give very similar results, with acceptable error levels
on the cut-off frequency but higher error levels on the normalized
distance. However, the intrinsic drawback of the two-layer model is
that the optimization has to be performed for each set of chamber and
propellants conditions. Concerning the n-layer model, tested here
with 15 layers of equal volumes, we observe that its response is an
order ofmagnitude closer to the continuousmodel comparedwith the
optimized two-layer model. Moreover, this model does not need a
systematic optimization, which is an important advantage.

V. Conclusions

An investigation of the unsteady evaporation of a propellant
droplet submitted to an acoustic excitation, undertaken in the frame-
work of liquid propellant rocket engine high-frequency stability
analysis, shows the importance of internal thermal exchanges. A
continuous analytical model has been established in the frame of
the Heidmann analogy, which represents a mean droplet at a fixed
chamber location in the established regime.We have then developed
a discrete n-layer model for implementation in a CFD code. This
discretemodel has beenvalidated by comparisonwith the continuous
model, which can be considered as a reference in the limit of small
perturbations andwhen the characteristic time of thermal conduction
is much smaller than the droplet lifetime. We assume that the results
of this validation remain valid outside the linear domain.

The model with n layers of equal volumes is sufficiently precise
for n � 10, but theCPU cost will be relatively high. To obtain a better
trade-off between precision and cost, we have considered an n-layer
model with a reduced number of layers in which the volume of each
layer has to be optimized. This method has been tested with the two-
layer model.

This model of a droplet with two layers of optimized volume ratio
reproduces the droplet response to a pressure perturbation in a
reasonably realistic way with a low CPU cost. However, the volume
optimization has to be carried out for each situation, taking into
account theflowconditions, the thermal properties of the propellants,
chamber thermodynamics and chemistry, and atomization.

In the future, we intend to implement the multilayer model (in a
nonlinear form) into a CFD code and work on other aspects of the
modeling to validate and optimize tools for an enlarged range of
conditions. Specific aspects include 1) the influence of external
convection, 2) the case where the characteristic time for thermal
conduction is comparable to the droplet lifetime, and 3) the case of a
velocity perturbation (an acoustic pressure node).

Appendix: Linearized Equations of the Gas Phase
in the Context of Quasisteady Assumptions

I. Gas Phase Equations for Evaporation

Let us consider the gas phase around a vaporizing droplet. The
classical quasisteady-state hypothesis can be extended to droplet
vaporization in the presence of an external flow, with exchanges of
mass, momentum, and energy between the droplet and the external
flow, as was done byAbramzon and Sirignano in [26]. The gas phase
equations are modified to account for these exchanges. We suppose
an ideal mixture of perfect gases.

This is nearly the classical problem ([27–29]), but with heat
exchange between the gas and the liquid droplet. In the gas field the
solution of the diffusion equation is the same as the onewithout heat-
up of the droplet, and gives for the mass flow rate of the droplet

_M � 2
�DrSSh � ln �1� BM�
with BM � �YFS � YFC�=�1 � YFS� (A1)

where � is the gas density,D the mass diffusion coefficient, Sh� the
Sherwood number introduced byAbramzon and Sirignano [26] in an
extended film model, and Yj the mass fraction of species j. The

subscripts F, S, and C represent, respectively, the fuel, the droplet
surface, and the conditions far from the droplet.

On the other hand, solution of the conduction equation is modified
because of the change of the boundary condition at the droplet
surface. We introduce the heat flux QL that characterizes the heat
given to the drop, in addition to that necessary for evaporation, and a
Nusselt number Nu� (note that in the following, the Nusselt and
Sherwood numbers will both be taken equal to two). The mass flow
rate is then given by

_M� 4

k

cp
rSNu

� ln �1� BT�

with BT � cp�TC � TS�=�‘�QL= _M� (A2)

from which we can deduce QL � _M‘�BT0=BT � 1�,
BT0 � cp�TC � TS�=‘. The Spalding parameters BT and BT0 (noted
so because it corresponds to the caseQL � 0) depend on the droplet
temperature TS, on the temperature at infinity TC, on the gas specific
heat at constant pressure cp, and on the latent heat per unitmass ‘; k is
the heat conductivity of the gas,which can be replaced by an effective
thermal conductivity as in [26]. The mass flow rate is related to the
droplet massM by

_M��dM=dt; M� 4

3

r3S�L (A3)

where t is the time and rS the droplet radius.
The Spalding parameter for heat exchangeBT , defined by (A2), is

connected to the Spalding parameter for mass exchange BM, defined
by (A1), by the following equation:

_M� 4

k

cp
rSNu

� ln �1� BT� � 4
�DrSSh
� ln �1� BM� (A4)

which is derived from (A1) and (A2). Therefore, BT is a function of
BM, which depends on the gaseous fuel mass fraction at the droplet
surface (for a droplet and its surrounding atmosphere at rest, and if
the Lewis numberLe is equal to unity, we haveBT � BM). Thismass
fraction is connected to temperature TS by the equilibrium relation
between molar-free energies of the liquid and the gas, respectively,
�L � �F. When �L is function of T only, and for an ideal gas
mixture, this leads to pXFS � psat�TS�, where p is the pressure,Xj is
themolar fraction of species j in themixture, andwhere the saturated
vapor pressure can be written [22]: psat�TS� � exp	a � b=�TS � c�
,
with a, b, and c constant coefficients.

Then, we can relate YFS to the surface molar fraction XFS, thus
the surface mass fraction YFS appears as a function of surface
temperature TS and total pressure p, which is assumed uniform and
constant,YFS � f�TS; p�. Thus,BT andBM are a function ofTS only.

The latent heat itself is a function of temperature and concentration
at the surface. Indeed, from the Clapeyron relation one has per
mole of pure substance L� �RT2=p��dp=dT�sat. This relation,
applied here to the unit mass and replacing the pressure by the partial
pressure gives

‘� bRT2
S

MF�TS � c�2

whereMj is the molar mass of species j and A a diluted species (the
gaseousmixture ismade ofA andF, the droplet ismade of pure liquid
F). As temperature and concentrations are not constant in the
environment of the droplet, the averaged properties cp, k are
evaluated at a reference temperature and composition �T � TS�
Ar�TC � TS�, �YF � YFS � Ar�YFC � YFS�, where Ar � 1=3 is
generally chosen.

II. Small Perturbation Equations of the Gas Phase

Consider now small acoustic perturbations, writing f� �f��f
where f is a flow parameter, �f is the absolute perturbation, and
f0 ��f=f is the corresponding relative perturbation.
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We assume Heidmann’s configuration, that is, a mean droplet fed

by liquid F with a mass flow rate �_M in the stabilized regime (Fig. 1).
The Eq. (A3) is then replaced by Eq. (1). The velocity perturbation is
assumed equal to zero and we look for the relation between the
imposed chamber perturbation p0 and the resulting mass flow rate
perturbation _M0. To do this, we have to write the equations of both
the gas phase and the liquid. Here we derive the equations for the gas
phase. The equations for the liquid phase where given in Sec. III.

From _M � 4
�DrS ln �1� BM� with

BM �
YFS � YFC
1 � YFS

we obtain

_M 0 � 1

3
M0 �

�BM

�1� �BM� ln �1� �BM�
B0M

with

B0M �
�YAC �YFS

�YAS� �YFS � �YFC�
Y 0FS

and

Y 0FS �
MA

MF
�XFS �MA

�XAS
X0FS

X0FS � p0sat � p0c, p0sat � �bT0S

�b� b �TS

� �TS � c�2

The quantity QL, the heat flux for heating up the droplet, is zero for
the stabilized reference state. This precludes the use of a relative
perturbation Q0L, and it is necessary to keep the absolute per-
turbation �QL. From QL � _Ml	cp�TC � TS�=BTl � 1
, l� bRT2

S=
MF�TS � c�2, one deduces

�QL �� �_M �‘�
�TS

�TC � �TS
T 0S �

�TC
�TC � �TS

T 0C � B0T � ‘0�

with

B0T �
�BM
Le

�1� �BM�
1

Le
�1

�1� �BM�
1

Le � 1
B0M; l

0 � � 2c
�TS � c

T 0S

Eliminating the intermediate parameters, one deduces

d _M0

dt
�

_M0

3��v
� �

�
�b
dT 0S
dt
� dp0C

dt

�
(A5)

with

��
�BM

�1� �BM� ln �1� �BM�
�YAC �YFS

�YAS� �YFS � �YFC�
MA

MF
�XFS �MA

�XAS

�� v �
�M
�_M
�

�Lcp �r
2
S

3k ln �1� �BT�

and

�QL � �_M �‘� �ap0c � �T0S� (A6)

with

�� cL
�TS
�‘

��
�TS

�TC � �TS
� 2c

�TS � c
� �b’

�b�
�TS

� �TS � c�2
b

�a�
�TC

�TC � �TS

� � 1

�
� ’

and

’�
�BM
Le

�1� �BM�
1
Le�1

�1� �BM�
1
Le � 1

�YAC �YFS
�YAS� �YFS � �YFC�

MA

MF
�XFS �MA

�XAS

For a Lewis number equal to one we have

’�
�YAC �YFS

�YAS� �YFS � �YFC�
MA

MF
�XFS �MA

�XAS

For the case of harmonic perturbations one has f0 � f̂ei!t for any
relative small perturbation and�QL ��Q̂Le

i!t for the absolute heat
flux perturbation. Consequently, the two equations of the gas phase
become

_̂M� � iu

1� iu �
�bT̂S � p̂C� (A7)

with u� 3��v! and

�Q̂L � �_M �‘� �ap̂C � �T̂S� (A8)
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